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Abstract. We investigate an electron in the plane interacting with the magnetic field due to an
electric current forming a localized rotationally symmetric vortex. We show that independently
of the vortex profile an electron with spin antiparallel to the magnetic field can be trapped if
the vortex current is strong enough. In addition, the electron scattering on the vortex exhibits
resonances for any spin orientation. On the other hand, in distinction to models with a localized
flux tube this situation exhibits no bound states for weak vortices.

Interaction of charged particles with a localized magnetic field has been a subject of interest
for a long time, both from the theoretical and experimental point of view—see, for example,
[GBG, Št] and references therein. Such a field can have different sources, for instance, it
may be induced by an electric current having one or more vortices. In the last decade a
lot of attention has been paid to vortex bound states in superconductors whose dynamics is
governed by the Bogoliubov–de Gennes equation—cf [HRD, SHDS, GS] and a bibliography
given in [HIM].

Another, much simpler, example involves a Pauli electron interacting with a flux tube
modelling a vortex magnetic field—it is appealing, in particular, since it has been observed
that vortices often appear in the probability current associated with mesoscopic transport—
see [ĚSSF] and the literature there. The system of a tube and an electron has been
investigated in a recent paper by Cavalcantiet al [CFC] who, however, seem to be unaware
of another recent studies of the problem—cf [Mo] and references therein. In these papers,
the field is assumed to be constant within a circle and zero otherwise—the conclusion then
is that in one spin state the electron can always be trapped by the vortex, independently of
the magnetic flux value, as long as the effective gyromagnetic factorg∗ > 2. This covers
the physically important case of a free electron withg∗ = 2.0023.

However, this claim depends substantially on the magnetic field ansatz used. To
illustrate this point we analyse in this letter the situation where thevortex current distribution
represents the input. On one hand we are able to generalize the result of [Mo, CFC] by
showing that vortices can trap electrons independently of their profile, and what is physically
equally important, that they cause resonances in the electron–vortex scattering which become
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sharper as the vortex strength grows. On the other hand, the trapping needs, in this more
realistic setting, a certain minimum vortex strength (measured by the total circulating current
or, say, the dipole moment of the field) to occur. To make things simpler we suppose that
the vortex iscentrally symmetric. We are convinced that the symmetry is not vital for the
conclusions, but its absence makes the treatment technically much more complicated and
we postpone the discussion of the general case to another paper.

The dynamics of a nonrelativistic electron in the plane exposed to a perpendicular
but nonhomogeneous magnetic field is given by the respective Pauli equation, i.e. by the
Hamiltonian

H = 1

2m∗
(
−ih̄∇+ e

c
A(x)

)2
+ 1

2
gµBσ3B(x) (1)

wherem∗ is the effective electron mass,g the gyromagnetic factor,µB = eh̄/2mec the
Bohr magneton, and the sign choice corresponds to the negative charge−e of the electron.
In the rational units, 2m∗ = h̄ = c = 1 this becomes

H = (−i∇+ eA(x))2+ 1
2g
∗eσ3B(x) (2)

with the effective gyromagnetic factorg∗ = g m∗
me

. SinceH is matrix-diagonal, each spin
state can be treated separately. Moreover, we shall consider the situation when the magnetic
field is rotationally symmetric. This allows us to perform the partial-wave decomposition
and to replaceH by the family of operators

H
(±)
` = − d2

dr2
− 1

r

d

dr
+ V (±)` (r) V

(±)
` (r) :=

(
eA(r)+ `

r

)2

± 1

2
g∗eB(r) (3)

on L2(R+, rdr). To determine their spectral properties, we have to specify the involved
functions, the angular componentA(r) of the vector potential and the related magnetic field,
B(r) = A′(r)+ r−1A(r).

We have said that they correspond to a circulating electric current in the plane, which is
supposed to be anticlockwise and to have the angular component only,J(x) = λδ(z)J (r)eϕ .
Here r, ϕ are the polar coordinates in the plane; the total current isλ

∫∞
0 J (r) dr. The

positive parameterλ can, of course, be absorbed intoJ ; we introduce it as a tool to
control the vortex ‘strength’. The current density is supposed to obey the following modest
requirements:

(i) J is C2 smooth and non-negativeJ (r) > 0
(ii) at the originJ (r) = ar2+O(r3)

(iii) at large distancesJ (r) = O(r−3−ε) for someε > 0.
The vector potential in the planez = 0 is then also anticlockwise; its magnitude

A(r) = λ
∫ ∞

0
dr ′ r ′J (r ′)

∫ 2π

0

cosϕ′ dϕ′

(r2+ r ′2− 2rr ′ cosϕ′)1/2
(4)

is obtained by summing the contribution from all the circular current lines [Ja],

A(r) = λ
∫ ∞

0
J (r ′)

4r

r + r ′
(2− ρ2)K(ρ2)− 2E(ρ2)

ρ2
dr ′ (5)

whereρ2 := 4rr ′
(r+r ′)2 andK,E are the full elliptic integrals of the first and the second kind,

respectively. Using [AS, 17.3.29, 30] (pay attention to a misprint there), one can also cast
(5) into the form

A(r) = 4λ
∫ ∞

0
J (r ′)

r ′

r<

[
K

(
r2
<

r2
>

)
− E

(
r2
<

r2
>

)]
dr ′ (6)
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where we have used the usual shorthands,r< := min(r, r ′) and r> := max(r, r ′); the same
result follows directly from (4) and [GR, 3.674.3]. In view of (i) the integral is finite for
everyr, becauseE(ζ ) is regular atζ = 1 andK(ζ) has a logarithmic singularity there.

Let us denote the Pauli Hamiltonian (2) with the vector potential (6) byH(λ); the
symbolH(±)

` (λ) will be used for its spin and orbital momentum components. Our main
result is then the following:

Theorem.Under the stated assumptions,σ(H(λ)) = [0,∞) for |λ| small enough. On the
other hand,H(−)

0 (λ) has a negative eigenvalue for a sufficiently largeλ.

Proof. The first claim has to be checked for anyH(±)
` (λ). By (i), the potentialsV (±)` are

C1 smooth; they decay at infinity as

V
(±)
` (r) = `2

r2
+ λem2`∓ g∗

r3
+O(r−3−ε) (7)

wherem := π
∫∞

0 J (r ′)r ′2 dr ′ is the dipole moment of the current forλ = 1—cf [Ja].

Consequently,σess(H
(±)
` (λ)) = [0,∞) following [RS, section XIII.4]. We rewrite the

potentials into the form

V
(±)
` (r) =

(
λeA1(r)+ `

r

)2

± λ
2
g∗eB1(r) (8)

where the indexed magnetic field refers to the valueλ = 1. SinceH(±)
` (λ) is just thes-wave

part of the two-dimensional Schrödinger operator with the centrally symmetric potential (8),
it is sufficient to check that the latter has no negative eigenvalues. If` = 0 the potential
decay allows us to apply theorem 3.4 of [Si] by which a negative eigenvalue exists for
small positiveλ if and only if

∫∞
0 V

(±)
` (r)r dr 6 0. However, the flux through the circle

of radiusr is 2π
∫ r

0 B(r
′)r ′ dr ′ = 2πrA(r), so the second term in (8) does not contribute

and the integral is determined by the first one which is positive for any nonzeroλ. If
` 6= 0 the decay is too slow, but this difficulty is easily overcome. We replace the first
term, for example, by(λeA1(r) + `

r
)22(r0 − r) with a positiver0 and obtain the absence

of a negative eigenvalue for a smallλ; the same is, by the minimax principle, true for the
original operator.

For the existence claim the behaviour of the potential around the origin is vital. We
shall write the vector potential in the form

A(r) = λµr + α0(r) µ :=
∫ ∞

0
J (r ′)

dr ′

r ′
. (9)

The behaviour ofα0 follows from (6) and the following estimate on the difference of the
elliptic integrals,

πζ

4
6 K(ζ)− E(ζ ) 6 π

2

(
ζ

8
− 3

8
ln(1− ζ )+ bζ 2

)
(10)

for a sufficiently largeb > 0, which is a straightforward consequence of [AS, 17.3.11, 12]
and [GR, 8.123.2]. On the lower side we thus obtain

α0(r) >
π

r2

∫ r

0
J (r ′)r ′2 dr ′ − πr

∫ r

0
J (r ′)

dr ′

r ′
> −3

4
πar2+O(r3).
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The upper bound is similar. In view of (i)–(iii),J (r) 6 ãr for a suitablẽa; in the logarithmic
term we employ the Taylor expansion which gives

3πã

4r

∫ ∞
r

∞∑
j=2

r2j

(r ′)2j−2
dr ′ = 3πã

4
r2
∞∑
j=2

1

j (2j − 3)
.

Together we findα0(r) = O(r2). This further implies

B(r) = 2λµ+ β0(r) β0(r) := α′0(r)+
1

r
α0(r) ∈ O(r). (11)

The operatorH(−)
0 (λ) can therefore be written as

H
(−)
0 (λ) = − d2

dr2
− 1

r

d

dr
+ (λe(µr + α0(r)))

2− 1

2
λeg∗(2µ+ β0(r)). (12)

Using the rescaled variableu := r√λ we find it to be unitarily equivalent to the operator

λAλ with Aλ = A0+Wλ (13)

on L2(R+, udu), where

A0 := − d2

du2
− 1

u

d

du
− g∗eµ+ e2µ2u2 (14)

and

Wλ(u) := 2
√
λe2µuα0

(
u√
λ

)
+ λe2α2

0

(
u√
λ

)
− 1

2
g∗eβ0

(
u√
λ

)
. (15)

We have clearlyσess(Aλ) = σess(λAλ) = [0,∞) for any λ > 0, while A0 as thes-wave
part of the two-dimensional harmonic oscillator has a purely discrete spectrum. Despite the
fact that the perturbation is large (the maximum ofWλ grows linearly withλ), one may
attempt to employ theasymptoticperturbation theory.

Unfortunately, theorems VIII.3.11 and VIII.13 of [Ka] cannot be applied directly,
because the family{Wλ} is not monotonous. Instead we use the fact thatWλ tends to
zero pointwise asλ→∞, since the above estimates yield

|Wλ(u)| 6 (2e2µcαu
3+ 1

2g
∗ecβu)λ−1/2+ e2c2

αu
4λ−1 (16)

for some positivecα, cβ . The family {Aλ} can be estimated from below because the
potentials have in view of (15) a uniform lower bound. Hence one can chooseξ0 < 0
which belongs toρ(Aλ) for all λ, and the resolvents form a bounded family of positive
operators,(Aλ − ξ)−1 6 (ξ0− ξ)−1, for any ξ < ξ0. Next we use a trick based on the
resolvent identity: for a vectorf = (A0− ξ)g with a fixedg ∈ C∞0 (R+) we have

‖(Aλ − ξ)−1f − (A0− ξ)−1f ‖ = ‖(Aλ − ξ)−1Wλg‖ 6 (ξ0− ξ)−1‖Wλg‖ → 0 (17)

asλ→∞ in view of (16) and the compact support ofg. However, the family of suchf
is dense inL2(R+, udu), soAλ→ A0 in the strong resolvent sense.

This allows us to employ theorem VIII.1.14 of [Ka] by which to anyνn ∈ σp(A0) there
is a family of νn(λ) ∈ σ(Aλ) such thatνn(λ) → νn as λ → ∞. It is therefore decisive
that the unperturbed eigenvalue is stable in the sense of [Ka], which means negative in our
case. The spectrum ofA0 is given explicitly by

νn = eµ(4n+ 2− g∗) n = 0, 1, . . . (18)

so the condition is satisfied forn = 0 if g∗ > 2 (as in [CFC], the next eigenvalue comes in
to play for g∗ > 6 which is not physically appealing). �
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We finish the letter by remarks on extensions of the result and related topics.
(a) The difference in theweak-coupling behaviourcomparing with [Mo, CFC] is not

surprising. In their case
∫∞

0 V
(−)

0 (r)r dr is dominated for smallλ > 0 by the negative term
due to the well. In reality, however, the magnetic field flux lines are closed inR3, so the
well is compensated for by a repulsive tail, small but extended, which prevents the trapping.

(b) The asymptotic perturbation theory yields also the ground-state behaviour asλ→∞.
By [Ka, theorem VIII.2.6] the leading-order correction toν0 is

(ψ0,Wλψ0) = 3e

8
(g∗ + 2)

√
π

eµ
α′′0(0)λ

−1/2+O(λ−1)

where ψ0 is the ground-state eigenfuction of the two-dimensional harmonic oscillator.
However, α′′0(0) = 0, so the ground state of the original operatorH(−)

0 (λ) behaves as
−λeµ(g∗− 2)+O(1).

(c) Large λ give rise to anorbital series of bound states: the above argument
also works forH(−)

` (λ) with ` = −1,−2, . . . . The potential in (14) is replaced at
that by e2µ2u2 + `2r−2 + eµ(2` − g∗), and one looks for negative eigenvalues among
νn,` = eµ(4n+ 2(|`| + `)+ 2− g∗). The criticalλ at which the eigenvalue emerges from
the continuum is naturallỳ-dependent.

(d) Positive eigenvalues ofA0 are unstable in the sense that they disappear in
the continuum once the perturbation (15) is turned on. Following [Ka, section VIII.5],
however, they give rise to spectral concentration asλ → ∞ which is manifested by
resonancesin electron scattering on the vortex. Knowing the shape of the potential
barrier, one can compute their widths which vanish exponentially fast withλ. For a
fixed `, the number of resonances grows asymptotically linearly withλ, because the
eigenvalues of the operator (14) are equally spaced and the top of the potential barrier
in Aλ is asymptotically linear inλ. For the same reason, resonances exist at largeλ

for both spin signs. Note also that the existence of resonances is not restricted by the
value of the gyromagnetic factor, and therefore they may be observed in semiconductor
systems where|g∗| is typically less than one, in some cases even of the order of
10−2.

(e) The above-mentioned resonance scattering is apurely quantum effect. A classical
electron can, of course, be trapped in the current vortex if it is placed inside the potential
barrier (3) with the energy less than its top (since there is no spin in this case,g∗ = 0,
the well bottom is at zero). On the other hand, an electron of the same energy outside
the barrier gets scattered without the possibility of entering temporarily the interior of the
vortex.

(f) In addition to the smooth current distributions discussed above, the caseJ (r) =
δ(r − R) is of a practical interest. As an illustration, imagine two adjacent thin films, one
supporting a free-electron gas while the other is equipped with a mesoscopic ring in which
a persistent current circulates. The effective potential is now given explicitly by (2) and
(6); in distinction to the smooth case it has a singularity of the type(r−R)−1 and the
operatorsH(±)

` (λ) need a regularization. Since theδ function above is an idealization of a
sharply localized distribution, it is reasonable to choose for this purpose from the family of
all admissible procedures a scheme based on the principal value of the singular potential
[NZ, Ku].

(g) The Pauli operator with a localized magnetic field exhibits the properties noted
by Aharonov and Casher [AC, Th]. They are based on a factorization property of
H valid for g∗ = 2; hence they do not conflict with the existence of a bound
state with a preferred spin orientation established above. The existence of a critical
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current needed to bind the electron can be also understood in terms of the first AC
theorem. In contrast to [CFC] the total flux is zero so there are no zero-energy
solutions forg∗ = 2 which could change into true bound states under an arbitrarily weak
perturbation.

(h) Note finally another difference. The model with a flux tube can have a natural
‘squeezing limit’ in terms of Aharonov–Bohm Hamiltonians with a pointlike magnetic flux
[Mo, AT, DŠ] because the vector potentials coincide outside the flux tube and the attractive
part tends to aδ-well (with the exception of a single one, the resonances mentioned in (d)
are lost at that as is usual in such situations—cf [AGHH]). On the other hand, the present
case is more complicated being essentially three-dimensional as far as the magnetic field is
concerned.

A useful comment by R Cavalcanti is appreciated. PE is grateful for the hospitality extended
to him at CPT where this work was done. The research has been partially supported by
GAAS under the contract A1048801.
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